Synaptic transmission mediated by internal calcium stores in rod photoreceptors.
نویسندگان
چکیده
Retinal rod photoreceptors are depolarized in darkness to approximately -40 mV, a state in which they maintain sustained glutamate release despite low levels of calcium channel activation. Blocking voltage-gated calcium channels or ryanodine receptors (RyRs) at the rod presynaptic terminal suppressed synaptic communication to bipolar cells. Spontaneous synaptic events were also inhibited when either of these pathways was blocked. This indicates that both calcium influx and calcium release from internal stores are required for the normal release of transmitter of the rod. RyR-independent release can be evoked by depolarization of a rod to a supraphysiological potential (-20 mV) that activates a large fraction of voltage-gated channels. However, this calcium channel-mediated release depletes rapidly if RyRs are blocked, indicating that RyRs support prolonged glutamate release. Thus, the rod synapse couples a small transmembrane calcium influx with a RyR-dependent amplification mechanism to support continuous vesicle release.
منابع مشابه
Caffeine-sensitive calcium stores regulate synaptic transmission from retinal rod photoreceptors.
We investigated the role of caffeine-sensitive intracellular stores in regulating intracellular calcium ([Ca(2+)](i)) and glutamatergic synaptic transmission from rod photoreceptors. Caffeine transiently elevated and then markedly depressed [Ca(2+)](i) to below prestimulus levels in rod inner segments and synaptic terminals. Concomitant with the depression was a reduction of glutamate release a...
متن کاملMpp4 is required for proper localization of plasma membrane calcium ATPases and maintenance of calcium homeostasis at the rod photoreceptor synaptic terminals.
Membrane palmitoylated protein 4 (Mpp4) is a member of the membrane-associated guanylate kinase family. We show that Mpp4 localizes specifically to the plasma membrane of photoreceptor synaptic terminals. Plasma membrane Ca(2+) ATPases (PMCAs), the Ca(2+) extrusion pumps, interact with an Mpp4-dependent presynaptic membrane protein complex that includes Veli3 and PSD95. In mice lacking Mpp4, PM...
متن کاملCannabinoid receptor activation differentially modulates ion channels in photoreceptors of the tiger salamander.
Cannabinoid CB1 receptors have been detected in retinas of numerous species, with prominent labeling in photoreceptor terminals of the chick and monkey. CB1 labeling is well-conserved across species, suggesting that CB1 receptors might also be present in photoreceptors of the tiger salamander. Synaptic transmission in vertebrate photoreceptors is mediated by L-type calcium currents-currents tha...
متن کاملThe Auxiliary Calcium Channel Subunit α2δ4 Is Required for Axonal Elaboration, Synaptic Transmission, and Wiring of Rod Photoreceptors
Neural circuit wiring relies on selective synapse formation whereby a presynaptic release apparatus is matched with its cognate postsynaptic machinery. At metabotropic synapses, the molecular mechanisms underlying this process are poorly understood. In the mammalian retina, rod photoreceptors form selective contacts with rod ON-bipolar cells by aligning the presynaptic voltage-gated Ca2+ channe...
متن کاملScotopic visual signaling in the mouse retina is modulated by high-affinity plasma membrane calcium extrusion.
Transmission of visual signals at the first retinal synapse is associated with changes in calcium concentration in photoreceptors and bipolar cells. We investigated how loss of plasma membrane Ca2+ ATPase isoform 2 (PMCA2), the calcium transporter isoform with the highest affinity for Ca2+/calmodulin, affects transmission of rod- and cone-mediated responses. PMCA2 expression in the neuroblast l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 6 شماره
صفحات -
تاریخ انتشار 2006